Posts tagged with "DNA"

Addicted to being busy?

February 15, 2019

Is your plate too full? Are you slammed or swamped? Or is your work ethic in overdrive?

We live in an era where flaunting our hectic schedules is considered cool and multitasking is productive. But for some of us, there is another dynamic at work: We are just addicted to being busy, according to a recent report by DNA.

Seema Hingorrany, a clinical psychologist and trauma therapist whose practice is in Mumbai comes across such people all the time, she says.

“People use the ‘I’m so busy’ phrase … to seek approval, …[to] appear busier than they actually are,” Hingorrany told the India-based news outlet. “Most people are lacking awareness or mindfulness. They are on hyper mode, on autopilot …. Most [finally are driven to] seek help when they take on too much stress and go into depression, or start having anxiety.

Bhakti Thakkar Bauva, a consultant clinical psychologist at Fortis Hiranandani Hospital in Vashi, sees a lot of people with this go-go psychology between the ages of 25 and 45, she told DNA. “They are mostly professionals who are entrepreneurs with their own business—or sometimes working in a multinational corporation in leadership roles. I, personally, have seen almost equal number of males and females, who use busyness as a coping mechanism,” she says. They are aware that they are busy all the time, but feel that there is no other way, and theirs is the best approach.

Indeed, “…the word, busy, has become synonymous with being successful. If you are a ‘busy’ person you are automatically important and sought-after, “ Mansi Hasan, a clinical psychologist who practices in Mumbai tells DNA.

She adds that FOMO (fear of missing out), high drive, and our environment are “hugely responsible”  for this addiction, as they are constantly putting pressure on us to compete in a world that is rapidly evolving around us.

People who are prone to exhibit the addiction have Type A personalities, she says, and typically exhibit behaviors such as aggression,competitiveness, impatience, and a desire for control.

Hingorrany sees clients suffering from severe burnout, chronic fatigue syndrome and major depressive episodes. They also suffer from anxiety symptoms. People also complain about anger, pain disorders and other physiological issues.

Most experts believe that the addiction starts as a coping strategy. Bauva gives examples like, “I am finding it difficult to sleep at night, so let me work so much that I pass out due to exhaustion …. It means that the individual has an imbalanced, stressful life, where the problems are not resolved and are getting piled up.

“As the concerns are not going anywhere, they will only magnify with time,”she warns.

If you recognize yourself in this story, Mansi Hasan says the the following tips might help:

  • Spend at least 30 minutes daily with yourself doing nothing.
  • Restrict your screen time.
  • Slow down, don’t attempt to be superhuman.
  • Initiate boredom.
  • Sleep and eat well.
  • Spend time with nature. Use your five senses to rejuvenate yourself.
  • Connect to your inner self.
  • Don’t be task-oriented, be life-oriented.
  • Seek happiness, but not in the form of materialistic success.

Research contact: @dna

All in the family? DNA doesn’t determine longevity

November 15, 2018

If most people in your family live to a ripe old age, that might just be luck or coincidence. Findings of a study of the family trees of more than 400 million people indicate that the heritability of life span is well below past estimates.

Indeed, the research—conducted by Calico Life Sciences in cooperation with AncestryDNA—has determined that previous investigations into the role of genetics in longevity have failed to account for our tendency to select partners with similar traits to our own.

The new findings have been published in the November edition of Genetics, a journal of the Genetics Society of America.

“We can potentially learn many things about the biology of aging from human genetics, but if the heritability of life span is low, it tempers our expectations about what types of things we can learn and how easy it will be,” says lead author Graham Ruby of San Francisco-based Calico—a Google-funded research and development company that uses advanced technologies to further understand  the biology that controls lifespan.

Heritability is a measure of how much of the variation in a trait—in this case, life span—can be explained by genetic differences, as opposed to non-genetic differences such as lifestyle, sociocultural factors, and accidents. Previous estimates of human life span heritability have ranged from around 15% to 30%.

Starting from 54 million subscriber-generated public family trees representing 6 billion ancestors, Ancestry removed redundant entries and those from people who were still living, stitching the remaining pedigrees together. Before sharing the data with the Calico research team, Ancestry stripped away all identifiable information from the pedigrees, leaving only the year of birth, year of death, place of birth (to the resolution of state within the US and country outside the US), and familial connections that make up the tree structure itself.

They ended up with a set of pedigrees that included over 400 million people—largely Americans of European descent—each connected to another by either a parent-child or a spouse-spouse relationship. The team was then able to estimate heritability from the tree by examining the similarity of life span between relatives.

Using an approach that combines mathematical and statistical modeling, the researchers focused on relatives who were born across the 19th and early 20th centuries, finding heritability estimates for siblings and first cousins to be roughly the same as previously reported. But, as was also observed in some of the previous studies, they noted that the life span of spouses tended to be correlated: They were more similar, in fact, than in siblings of opposite gender.

This correlation between spouses could be due to the many non-genetic factors that accompany living in the same household—their shared environment. But the story really started to take shape when the authors compared different types of in-laws, some with quite remote relationships.

The first hint that something more than either genetics or shared environment might be at work was the finding that siblings-in-law and first-cousins-in-law had correlated life spans—despite not being blood relatives and not generally sharing households.

The size of their data set allowed the team to zoom in on longevity correlations for other more remote relationship types, including aunts and uncles-in-law, first cousins-once-removed-in-law, and different configurations of co-siblings-in-law. The finding that a person’s sibling’s spouse’s sibling or their spouse’s sibling’s spouse had a similar life span to their own made it clear that something else was at play.

If they don’t share genetic backgrounds and they don’t share households, what best accounts for the similarity in life span between individuals with these relationship types? Going back to their impressive data set, the researchers were able to perform analyses that detected assortative mating.

“What assortative mating means here is that the factors that are important for life span tend to be very similar between mates,” says Ruby. In other words, people tend to select partners with traits like their own—in this case, how long they live.

Of course, you can’t easily guess the longevity of a potential mate. “Generally, people get married before either one of them has died,” jokes Ruby. Because you can’t tell someone’s life span in advance, assortative mating in humans must be based on other characteristics.

The basis of this mate choice could be genetic or sociocultural—or both. For a non-genetic example, if income influences life span, and wealthy people tend to marry other wealthy people, that would lead to correlated longevity. The same would occur for traits more controlled by genetics: If, for example, tall people prefer tall spouses, and height is correlated in some way with how long you live, this would also inflate estimates of life span heritability.

By correcting for these effects of assortative mating, the new analysis found life span heritability is likely no more than 7 percent, perhaps even lower.

The upshot? Choose your mate wisely. How long you live has less to do with your genes than you might think.

Research contact:graham@calicolabs.com